Introducing the Practical Haplotype Graph Version 2: A Streamlined and Simple Pangenome System

Zachary Miller Institute for Genomic Diversity Cornell University

Introduction

- Lower cost of sequencing but still cost prohibitive to sequence entire plant breeding populations at high depths
- Reference Quality Assemblies are becoming widely available for a number of staple food crops with more on the way
- Can we use the diversity captured by a collection of assemblies (pangenome) to impute low cost short read genotype data better than traditional reference alignment techniques?

Introducing the Practical Haplotype Graph(PHG)

- Started development in 2017
- Initial success in building PHGs
 - Imputation
 - Genomic Selection
 - General data storage

• But had some issues

- Utilized a custom Postgres DB
- Certain components slow
- Overly Parameterized
- User Interface hard to use
- Poor/Out of date documentation

	> Pla	nt Genome	22 Aug 2;38(15):3698-3702. doi: 10.1093/bioinformatics/btac410.	
M C Affili	ge: ge:		ethesda). 2022 Jan 4;12(1):jkab383. doi: 10.1093/g3journal/jkab383.	
PMIE Abs Moti and	Sara Terry	Gen hapl Evan M Kelly R I Affiliatic PMID: 3	Development of the Wheat Practical Haplotype Graph database as a resource for genotyping data storage and genotype imputation \widehat{O} Katherine W Jordan, Peter J Bradbury, Zachary R Miller, Moses Nyine, Fei He, Max Fraser, Jim Anderson, Esten Mason, Andrew Katz, Stephen Pearce Show more Author Notes	va
	Abs Succ bree bicol infor for 2	Abstr Genomi increasi decreas large da less abu	Published: 09 November 2021 Article history ▼ ▶ PDF ■ Split View 66 Cite ▶ Permissions <€ Share ▼	come ias thering ources are n from
		limited i	To improve the efficiency of high-density genotype data storage and imputation in bread wheat (<i>Triticum aestivum</i> L.), we applied the Practical Haplotype Graph (PHG) tool. The Wheat PHG database was built using whole-	ition

PHGv2 - Works to address these issues

- Fast
- Easy to use
- Clear, Concise, and Up-to-date Documentation
- Integrate standard software development practices
 - Continuous Integration Code is tested early, often and automatically. >80% of code is covered by unit tests
 - Continuous Delivery Once code is reviewed and merged in a new build and release of the package happens automatically
- Utilize state of the art community tools as much as possible
 - Anchorwave aligner
 - tileDB Genotype(VCF) storage
 - Assembled Genomes Compressor(AGC) Sequence Storage

What do we mean by Practical Haplotype Graph?

• Practical

- Keep it simple!
- Biology produces genomes with consistent patterns
- Somewhat Conserved Genes + Intergenic Regions with tremendous variation
- Slice the genome at these conserved boundaries -> Reference Ranges
 - Simplifies the pangenome representation
- Haplotype
 - A set of DNA variations, or polymorphisms, that tend to be inherited together
 - Store both sequence and Variants
- Graph

A directed acyclic graph (DAG)

PHG - Trellis Graph

Terms

• Reference Range

- A Segment of the Reference Genome
- Typically recommended that range Start and End are conserved
- Common way to define these are genic boundaries

• Haplotype

- A set of DNA variations, or polymorphisms, that tend to be inherited together
- The PHG holds the following information for each haplotype
 - Variants in gVCF file
 - Nucleotide Sequence aligned to the reference for a specific Reference Range

PHG - Trellis Graph

Build a PHG - Create Ranges

>phg create-ranges --gff reference.gff --reference-file Reference.fasta --output refRanges.bed

Build a PHG

• We have a Reference and 3 Assemblies

Reference	GATCGATTGAGCTAGACCAAGG)	
Assembly A	GATCGATGCTAGACCAAGG	Assembled Genome	7
Assembly B	GAGCGATTGAGCTACAGACCAAGG	Compressor (AGC)	1
Assembly C	GAGCGATGCTAGACCAAGG		

>phg agc-compress --reference-file Ref.fa --fasta-list listOfFastas.txt

Build a PHG: Build Reference Haplotypes

- Use Conserved Base Pairs to slice the genome
 - Can use genic boundaries from the GFF annotation

>phg create-ref-vcf --bed /my/bed/file.bed --reference-file Ref.fa --reference-name Reference --output-dir /path/to/vcfs

hVCF - Simple Haplotype Storage Format

- We can store a set of haplotypes in a VCF based file format
- Key idea: hash the sequence to have a unique identifier
 - These identifiers can be stored as Symbolic alleles in a VCF file

hVCF - Simple Haplotype Storage Format

hVCF Benefits

- Small # of 'variants'
 - Only number of Reference ranges ~100k
- VCF based
 - Community Standard
 - Easy to understand
 - Lots of tools out there to process and analyze the data
- Works with small and large genomes
 - Supports .csi indexing so big genomes like wheat(15-17 Gbp) work just fine
- Sequences can be reconstituted based on haplotype metadata
 - Verify by checking the ID against the hash
- Can load into TileDB

Build a PHG: Align Assemblies to Reference

• We wrap the Anchorwave aligner to do this accurately and efficiently

>phg align-assemblies --gff anchors.gff --reference-file Ref.fa --a assembliesList.txt -o /path/for/alignment/files

Build a PHG: Build Assembly Haplotypes

--maf-dir /path/for/alignment/files -o path/to/vcfs

Build a PHG: Do all Assemblies + Load

>phg load-vcf --vcf-dir /path/to/vcfs

Now that we have a PHG, what can we do with it?

- Directed edges connect each haplotype with all haplotypes in next reference range
- Stronger weights are set for consecutive haplotypes of a given assembly

Imputation

Imputation

- We can have 1000s of samples sequenced with low depth short reads
 - GBS, DaRTSeq, Skim Sequence, anything in a fastq
- 2 Step Process per sample
 - Read Mapping
 - Path Finding
- Goal is to have this process take minutes

Imputation: Read Mapping

- Traditional Alignment tools like Minimap2 do work, but can we be more efficient?
- Aligning against the pangenome substantially increases resource requirements
- For this reason, we developed a Kmer based read mapping approach

Imputation: Index the Graph

>phg build-kmer-index --db-path /path/to/tiledb --index-file /path/to/write/index.txt --hvcf-dir /path/to/hvcfs

Reference Ranges

Kmer Read Mapper Performance

- Tested with a Maize PHG made with ~80 assemblies
 - Paired end 150 bp WGS reads
- Because of the low footprint for mapping, once an index is built, read mappings can be generated on just about any linux machine

	Minimap2(PHGv1)	Kmer (PHGv2)
Index Graph - 1 time	30 min(100GB RAM)	60 min(80GB RAM)
Map 5x WGS Paired End	90 min(100GB RAM)	50 sec(<10GB RAM)

Reference Ranges

Apply Hidden Markov Model

Reference Ranges

>phg find-paths --path-key-file key-file.txt --hvcf-dir /path/to/hvcfs/ --output-dir /path/to/hvcf/output --path-type haploid

Imputation: Path Finding

- The find-paths command will output a hVCF for each sample
- Allows the PHG to associate SNPs from assemblies with a new sample
- Can do both haploid and diploid path finding
- Option to use likely-parents to improve imputation

How Can You Actually Use the Graph?

• phg_v2 comes bundled with a simple BrAPI compliant ktor server

>phg start-server

Types of Analysis You Can Do!

- Genomic Selection / Genome Wide Association Studies
 - \circ \quad Can use imputed variants or imputed haplotypes
- Link and Visualize Haplotype information with metadata
- Generate Kinship/Distance Matrices
- Subset regions of the paths that you would like to focus on
 - This gene is interesting, what is surrounding it?
- Any type of analysis you can do with a VCF you can try with an hVCF

Whats next? - Summer Plans

- QC Reports
 - Each step will report back useful QC metrics for easy pipeline debugging
- Rare Allele pipeline
 - Using imputed paths can we find rare alleles within samples?
 - Can we use this to add additional diversity to the graph?
- Al Driven imputation
 - Can we train a model to give better imputation results?
- Support more Species
 - Right now ~5 species PHGv2s are being built
 - Maize, Sorghum, Cassava, Wheat, Cotton and more on the way
 - What are stress points?
 - What is confusing?

Check out our Github!

- We have great documentation
- Daily builds and releases
- We welcome code contributions!
- Issues can be submitted through Github or the 'phg' Biostars tag

Acknowledgements

Core Development Team:

- Ana Berthel
- Brandon Monier
- Lynn Johnson
- Peter Bradbury
- Terry Casstevens Biology QC/Alpha Test:
 - Bethany Econopouly
 - Cinta Romay
 - Qi Sun

IGD/Buckler Lab Leadership

- Ed Buckler
- Sara Miller

USDA U.S. DEPARTMENT OF AGRICULTURE

BILL& MELINDA GATES foundation

This research is funded by NSF Plant Genome Project (NSF #1822330), Bill and Melinda Gates Foundation, and USDA-ARS.

Questions?