

Standards for Genetic Variation Promoting the Use of Reference Identifiers for Genetic Markers in Agricultural

Research

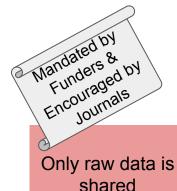
Marcela Karey Tello-Ruiz, PhD
Cold Spring Harbor Laboratory

AgBioData Standards for Genetic Variation WG

https://www.agbiodata.org/working_groups/sqv

Co-Chairs:

Marcela K. Tello-Ruiz Timothee Cezard

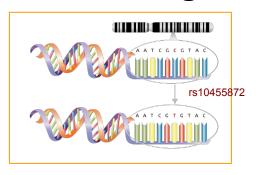


AgBioData SGV Working Group Goals

- => Bring together a community of agricultural GV data providers, biocurators & computer scientists to:
- 1. Improve FAIRness of Ag genotypic (and phenotypic) variant datasets for reuse
- 2. Promote interoperability and access to GV datasets
- Advocate for the increase use of standard formats and identifiers for data and metadata

Challenges with (non)FAIR variation datasets

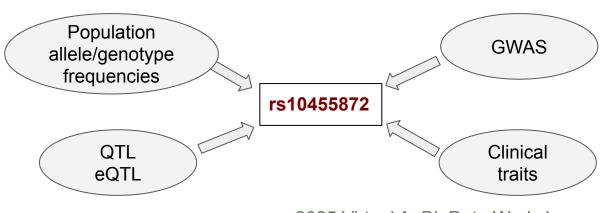
Dataset is shared as supplementary data or local DB

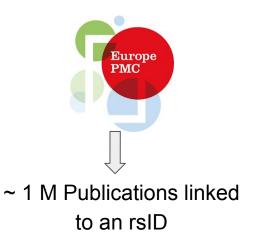

Dataset is shared in generalist FAIR data repository

Dataset uses standard identifiers & formats, and shared in specialized FAIR data repository

Not FAIR

FAIR

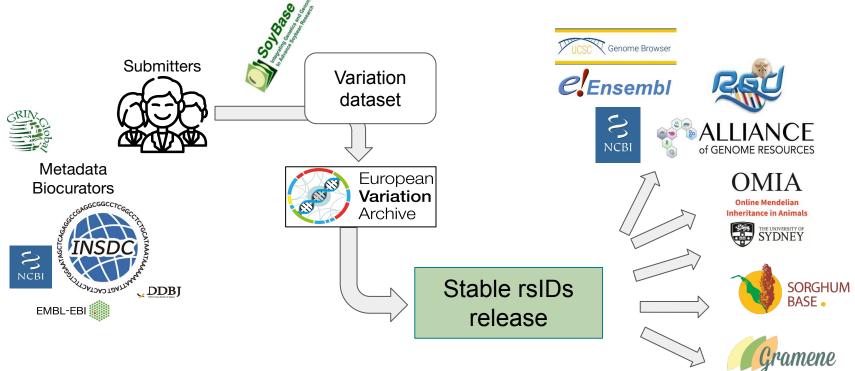

Power of using rsIDs



What is an rsID?

- Reference SNP cluster ID
- Identifies a variable genomic locus
- Globally unique, persistent accession
- Stable across genome assembly versions & crop varieties

Several data types aggregated around a marker



AgBioData SGV

2025 Virtual AgBioData Workshop

Integration of rsIDs in downstream resources

Data journey for GV datasets & recommended actions

Request assembly to be submitted to INSDC Encourage or broker SNP submission to EVA; promote using standard IDs & formats

Adopt rsIDs, germplasm IDs & controlled vocabularies Integrate with other standardized data types & link to other DBs & repos

Other AgBio DBs provided overview & progress towards FAIRifying GV data for white paper

Not FAIR

FAIR

Promoting use of rsIDs – Gramene / SorghumBase

Grame	ene PanGenome	Reference Crop (release #)	# SNPs (M)	# rsIDs (M)	
SORGHUMBASE	Genomic resources for the sorghum research community	Sorghum (R9)	78	41	
Gramene	Comparative plant genomics focused on maize varieties	Maize (R5)	220	79	
Gramene	Comparative plant genomics focused on rice varieties	Rice (R8)	66	27	
Granene Grapevine	Comparative plant genomics focused on grapevine varieties	Grape (R4)	0.5	0.3	

FAIR Standards for Agricultural GV Data

rsIDs

Reference cluster ID EVA provides stable/unique identifiers for non-human markers

rs123

rs456

rs789

SAMPLE3

0/1:1:3

0/0:1:3

0/0:5:15

Germplasm IDs

PI276837

IS12661

Provided by major germplasm repo

Variant Call Format

##fileformat=VCFv4.2

##contig=<ID=2,length=51304566> ##INFO=<ID=AC,Number=A,Type=Integer,Description="Allele count in genotypes">

VCF

##INFO=<ID=AN, Number=1, Type=Integer, Description="Total number of alleles in called genetypes"> ##FORMAT=<ID=GT, Number=1, Type=String, Description="Genotype">

##FORMAT=<TD=DP, Number=1, Type=Integer, Description="Read Depth">

##FORMAT=<ID=GQ,Number=1,Type=Integer,Description="Genotype Quality">

1	#CHROM	POS	ID	REF	ALT	QUAL FILTER INF	O FORMAT	SAMPLE1	SAMPLE2	
:	2 8117	Θ.	c	Т		. AC=9; AN=7424	GT:DP:GQ	0/0:4:12	0/0:3:9	(
:	2 8117	1.	G	Α		. AC=6; AN=7446	GT:DP:GQ	0/1:4:12	0/0:3:9	1
1	2 8118	2.	Α	G		. AC=5; AN=7506	GT:DP:GQ	0/0:5:15	0/0:4:12	

CO 324 0000079: Grain weight CO_324_0000027: Flowering time

SAMPLE4

0/1:9:24

0/0:9:24

0/0:9:24

0/0:15:39

CO_324_0000250: Grain protein content

GWAs, QTLs

Associate ontology terms with rsIDs

Ontology terms

Controlled vocabulary to describe sorghum traits associated with rsIDs

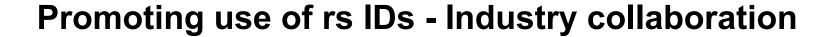
2025 Virtual AgBioData Workshop

Integration of rsIDs (non-human)

Integrated with multiple resources:

- Ensembl
- UCSC
- NCBI genome data viewer
- Alliance of Genome Resources
- OMIA (animals)
- **Gramene** (maize, rice, grape)
- **SorghumBase** (sorghum)

Promoting rsIDs in SNP arrays – Industry collaboration



Develop a community marker panel with rsIDs:

- Sorghum 2.4K SNPs (AgriPlex)
- 26 markers without rsIDs were assigned one

Summary of Outcomes

AgBioData SGV

- FAIRifying pilot studies
 - Identified data journeys
 - Highlighted curation challenges
- Metadata
 - Additional recommendations for VCF
 - Standardized germplasm identifiers
- Interaction with other WGs
 - Public Genetic Resources (merged) & Education
 (publication => Global Bioinformatics Education Summit)
- Promoting adoption of rsIDs
 - Community databases
 - Data aggregator & cross-link to other DBs
 - Outreach via new training material
 - Industry partners

Writing white paper

Thanks!

Join Our Breakout Room!

1. Based on the data journey (outline of our manuscript), are there examples of use cases not represented?

2. Are there LLMs that could be leveraged for the adoption of GV standards?

3. Future directions... Leverage strategies from human genetics (e.g., ACMG/AMP guidelines for clinical variants)

Lessons learned from medical genetics: ACMG/AMP Recommendations for Mendelian Variant Interpretation

- Colossal effort 2 years, 100s participants, many surveys. Original publication 2015; several modifications thereafter, many disease-focused (expert panels).
- Describes process for guidelines, quantitative classification criteria.
- Proposes standard terminology to classify variants (e.g., pathogenic, benign, uncertain significance with numeric levels)
- Criteria using typical types of variant evidence (e.g., population data, computational data, functional data, segregation data)

	€ Ber	nign	Pathogenic			
	Strong	Supporting	Supporting	Moderate	Strong	Very strong
Population data	MAF is too high for disorder BA1/BS1 OR observation in controls inconsistent with disease penetrance BS2			Absent in population databases PM2	Prevalence in affecteds statistically increased over controls PS4	
Computational and predictive data		Multiple lines of computational evidence suggest no impact on gene igene product BP4 Missense in gene where only turncating cause disease BP1 Silent variant with non predicted splice impact BP7 In-frame indels in repeat w	Multiple lines of computational evidence support a deleterious effect on the gene /gene product PP3	Novel missense change at an amino acid residue where a different pathogenic missense change has been seen before PM5 Protein length changing variant PM4	Same amino acid change as an established pathogenic variant PS1	Predicted null variant in a gen where LOF is a known mechanism of disease PVS1
Functional data	Well-established functional studies show no deleterious effect BS3		Missense in gene with low rate of benign missense variants and path, missenses common PP2	Mutational hot spot or well-studied functional domain without benign variation PM1	Well-established functional studies show a deleterious effect PS3	
Segregation data	Nonsegregation with disease BS4		Cosegregation with disease in multiple affected family members PP1	Increased segregation data	→	
De novo data				De novo (without paternity & maternity confirmed) PM6	De novo (paternity and maternity confirmed) PS2	
Allelic data		Observed in trans with a dominant variant BP2 Observed in cis with a pathogenic variant BP2		For recessive disorders, detected in trans with a pathogenic variant PM3		
Other database		Reputable source w/out shared data = benign BP6	Reputable source = pathogenic PP5			
Other data		Found in case with an alternate cause BP5	Patient's phenotype or FH highly specific for gene PP4			