DATA REUSE IN AGRICULTURAL GENOMICS RESEARCH: Challenges, solutions, and a case study

Alenka Hafner PhD candidate in Plant Biology, Penn State University AgBioData Data Reuse WG

MOTIVATION FOR DATA REUSE WG

Sequence-based datasets + WWW + Open Science movement

 \square a lot of data out there

No dataset is perfect

Data are often underutilized due to insufficient metadata and other challenges related to the FAIR data standards

Objective for WG: to identify bottlenecks in data reuse and critical needs to propose solutions for agricultural genomics community

Personal objective: understand the lack of reusability of methylome data

Barriers to data reuse and recommendations to overcome them

A case study of methylome data reuse

The future of data reuse

DATA REUSE =

the practice of utilizing existing data for

a novel scientific purpose beyond their original scope

Interoperability

Data ownership

User skill and resources

DATA QUALITY: STANDARDS AS A SOLUTION

- Data made publicly available regardless of quality \Box a (subjective) decision on suitability for reuse
- Factors to assess:
 - coverage,depth
 - depth,
 - technical and biological replication,
 - tissue type,
 - sample collection method,
- Limited scope of existing standards (even for common data types and organisms) extraction method and library preparation,
- difficult to obtain experine the apple of th
- More protocol, pipeline, and statistical standards needed in agricultural genomics field

ON THE ROAD TO COMPLETE METADATA: INCENTIVES

- Limited/incomplete/missing metadata submission templates
- Submission requires work
 Trade-off between
 collecting all some metadata via a lenient submission
 system and mandating comprehensive metadata
- Incentives are needed! E.g., data citations...

BRIDGING THE DATA AVAILABILITY GAP: A ROLE FOR ALL STAKEHOLDERS

Survey of *Science* and *Nature* in 2021 found that an alarming less than 50% of data stated to be "available upon request" could be effectively obtained from the original authors (Tedersoo et al., 2021)

for automatic data submission sanity checks

MORE DATA AVAILABLE FOR REUSE

TOWARDS INTEROPERABILITY: DATA FORMATTING

• Our community has converged on (meta)data standards for data file types:

FASTQ, SAM/BAM, VCF, GTF, GFF3, BED, ...

- Reference genome mapping can be an issue down the line
- "Backwards compatibility": outdated lab and sequencing methodology can be combated through extensive metadata (<u>https://www.protocols.io</u>)

DATA OWNERSHIP & SHARING REQUIREMENTS

- Challenge: Having access to relevant, affordable study populations from breeding companies that can also be shared publicly as sequence or genotype data
- Already many sharing requirements + 2026 mandate to make research funded by the USA government publicly available

- A recent study (LaFlamme et al., 2022) shows **that skill or perceived ability** was identified by many participants as a **major factor** influencing reuse behavior.
- 2017-2018 global survey: most scientists exhibited "high and mediocre risk data practices" (Tenopir et al., 2020).
- US-based institutions: computational resources likely not the limiting factor \Box it's skill level
- Education programs for awareness-raising and good practice training needed
- Incentives (!):DataWorks! Prize (<u>https://www.herox.com/dataworks</u>)

2. A CASE STUDY OF METHYLOME DATA REUSE

	 Sample provenance Type of replication 	te	 Consistency of formats .pdf 		Computational resourcesBarrier of entry
Data quality	Metadata	Data availability	Interoperability	Data ownership	User skill and resources
1111 1111					*
 Depth of seq Experimenta Tissue type REPLICATES 	l design	 Pipeline interme Code "Available on red .pdf 		Crops?	

Hafner, A., Mackenzie, S. Re-analysis of publicly available methylomes using signal detection yields new information. *Sci Rep* **13**, 3307 (2023). <u>https://doi.org/10.1038/s41598-023-30422-4</u>

3. THE FUTURE OF DATA REUSE

The importance and benefits of equity and inclusion

Take-aways and looking ahead

THE IMPORTANCE AND BENEFITS OF EQUITY AND INCLUSION

- Diversity breeds innovation
- Reuse requires computational capacity, internet access, digital literacy, and proficiency in dominant languages
- Data sovereignty: <u>https://localcontexts.org</u>

TAKE-AWAYS AND LOOKING AHEAD

BARRIERS & LIMITATIONS:

- Data quality & standards
- Missing metadata
- Interoperability
- o Data availability
- o Ownership
- o Skills & resources

The future of data reuse

is bright and exciting!

- Integration of datasets
- Emerging data types:

phenomes, metabolomes, proteomes, interactomes, enviromes, microbiomes, lipidomes, and glycomes

• AI and ML

WG's white paper

James Koltes, Iowa State University (WG chair)

Alenka Hafner, Penn State University (WG co-chair)

Victoria DeLeo - Bowery Farming

Cecilia Deng- The New Zealand Institute

for Plant and Food Research Limited

Christine G. Elsik - University of Missouri

Damarius Fleming, USDA

Peter W. Harrison, European Bioinformatics Institute

Ted Kalbfleisch, University of Kentucky

Bruna Petry, Iowa State University

Boas Pucker, TU Braunschweig

Elsa H Quezada-Rodríguez, Universidad Autónoma Metropolitana

-Xochimilco; Universidad Nacional Autónoma de México

Christopher K. Tuggle, Iowa State University

