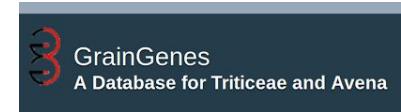


From Fragmented Data to Shared Knowledge: Adopting rsIDs in Agricultural Genomics

Marcela Karey Tello-Ruiz, PhD
AgBioData Standards for Genetic Variation Working Group

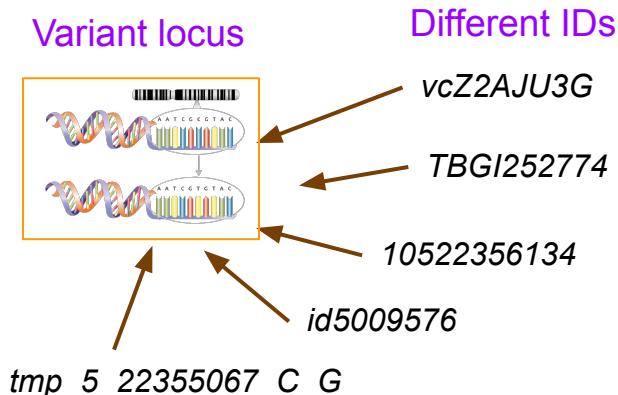
AgBioData Standards for Genetic Variation WG


AgBioData SGV

https://www.agbiodata.org/working_groups/sgv

GENOME DATABASE FOR VACCINIUM
Genomics, genetics, and breeding resources for blueberry, cranberry, bilberry, and lingonberry research

A Community-Led Path Toward FAIR Variant Data


Goals:

- Assess existing standards
- Identify communities at different data-maturity stages
- Focus on promoting rsID adoption via EVA
- Provide practical FAIR guidance*

Standardizing Genetic Variation for FAIR Agricultural Genomics

- Genetic variation data are critical for **breeding, trait discovery & adaptation**
- Agricultural genomics** generates vast amounts of SNP data that is hard to reuse & integrate

Why hard to reuse?

SNPs often labeled with:

- Project- or array-specific identifiers
- Assembly-dependent coordinates

Data spread across:

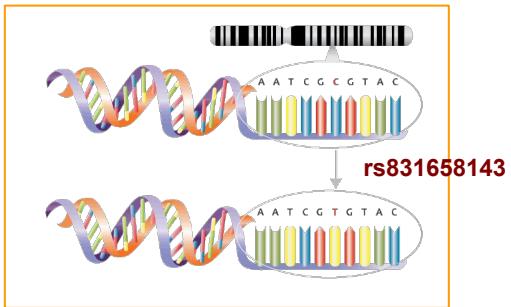
- Community databases
- Supplementary tables
- Commercial genotyping platforms

Challenges with (non)FAIR variation datasets

Only raw data is
shared (no
standard format)

Dataset is shared
as supplementary
data or local DB

Dataset is shared
in generalist FAIR
data repository

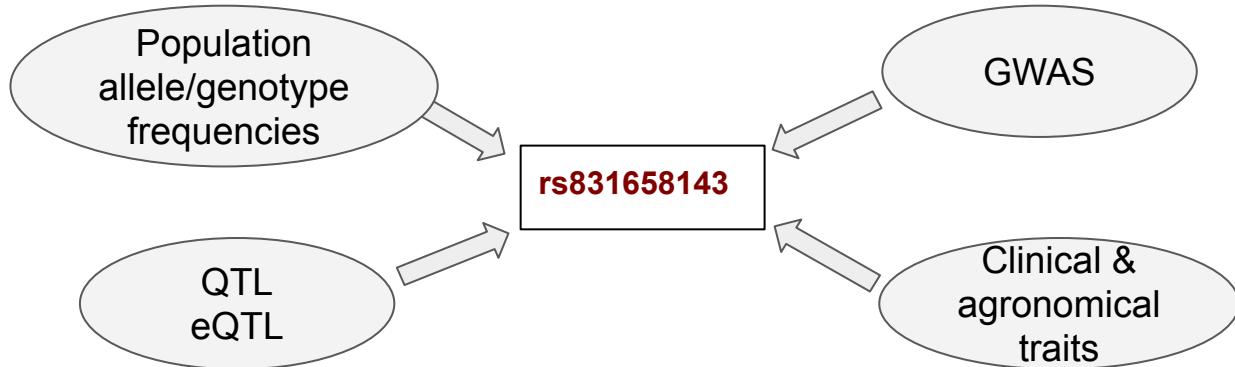

Dataset is shared in
specialized FAIR
data repository using
standard identifiers &
formats

Not FAIR

FAIR

How human genomics has tackled the SNP naming problem & why the problem is getting worse in agriculture?

The Power of Using rsIDs


What is an rsID?

- Reference SNP cluster ID
- Identifies a variable genomic locus
- Globally unique, persistent accession
- Stable across genome assembly versions & crop varieties

AgBioData SGV

Several data types aggregated around a marker

Better Genomes, Bigger Integration Challenges

- **Long-read sequencing** → high-quality reference genomes
- **Pan-genomes** reveal:
 - Previously hidden variation
 - Reference-specific biases

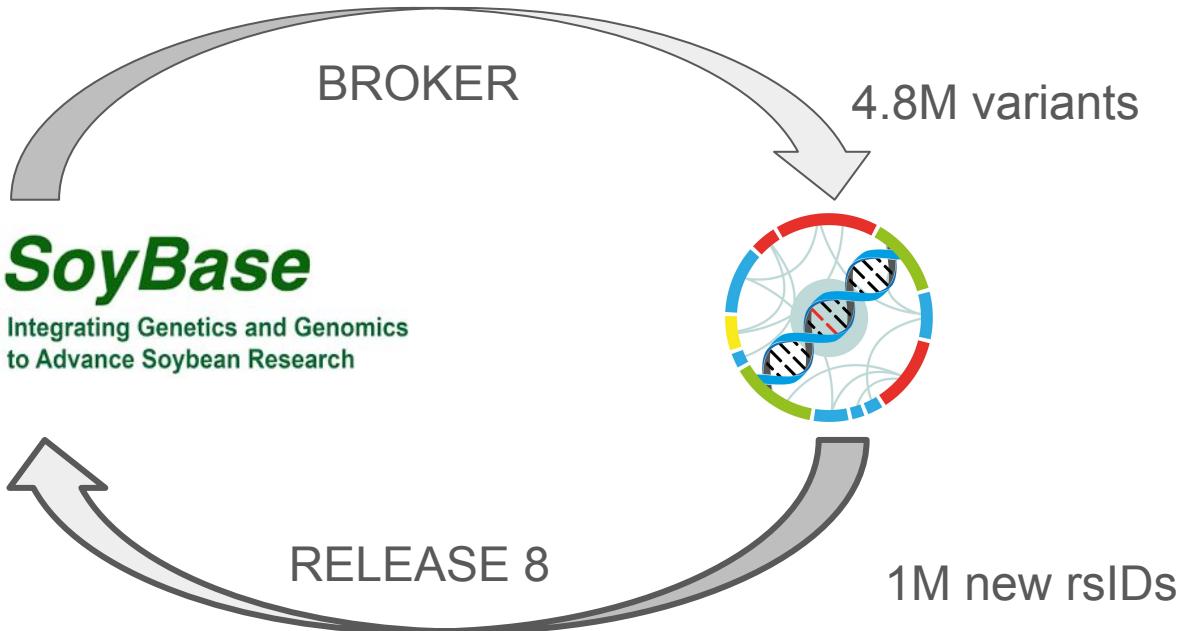
Without stable identifiers:

- Variant IDs break across assemblies
- Data integration becomes harder

Promoting use of rsIDs – SoyBase

Comprehensive description of genomewide nucleotide and structural variation in short-season soya bean

Davoud Torkamaneh^{1,2}, Jérôme Laroche¹, Aurolie Tardivel^{1,2,3}, Louise O'Donoghue³, Elroy Cober⁴,
Istvan Rajcan⁵ and François Belzile^{1,2,4}


¹Département de Physiologie, Université Laval, Québec City, QC, Canada

²Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec City, QC, Canada

³CEFRON, Centre de Recherche Sur Les Grains Inc., Sainte-Marthe de Belœil, QC, Canada

⁴Agriculture and Agri-Food Canada, Ottawa, ON, Canada

⁵Department of Plant Agriculture, Crop Science Bldg., University of Guelph, Guelph, ON, Canada

~90% concordance across studies despite *differences in technology and SNP density*

Promoting use of rsIDs – Gramene / SorghumBase

Gramene PanGenome	Reference Crop	# rsIDs* (M)
<p>SORGHUMBASE. Genomic resources for the sorghum research community</p>	Sorghum	46
<p>Comparative plant genomics focused on maize varieties</p>	Maize	79
<p>Comparative plant genomics focused on rice varieties</p>	Rice	68
<p>Comparative plant genomics focused on grapevine varieties</p>	Grape	0.3
	Arabidopsis	26

Sharon Wei

Marcela K. Tello-Ruiz

Promoting use of rsIDs – Community DB / Industry

Collaborative development of community marker panels with rsIDs:

- Sorghum 2.4K SNPs (AgriPlex panel)
- EVA assigned rsIDs to 26 markers without one


Vivek Kumar

Marcela K. Tello

Tim Cezard

The screenshot shows the AgriPlex Genomics website with a dark blue header featuring the AgriPlex logo and navigation links for HOME, FAQ, PRODUCTS, COLLABORATIONS, CONTACT US, FORMS, and NEWS. The main content area is titled 'Sorghum Panel' and includes text about the panel's purpose, composition, and availability through the AgriPlex Connect program. It also features four blue call-to-action buttons: 'Download Full White Paper', 'Download SNP list (Appendix A)', 'Inquire about the Consortium', and 'Save with AgriPlex Connect'.

rsIDs provide stable identifiers for transversing Pan-Genomes

AgBioData SGV

Sweet corn

***Zea mays* B73 v5**

Starchy corn
(B73, HP301)

Variant:	rs831658143
more about	rs831658143
Class	SNP
Location	4:43436836
Alleles	T/C
Ambiguity code	Y
Amino acid	W/R
Consequence	missense variant
Sources	NP, PMID:39611775, MaizeGDB, EVAS, HapMap2, EVA6
Codon change	Tgg/Cgg

HP301

- Zea mayspr12v; Zm0000000015/23
- Zea mays TIL11; Zp00001aa174280
- Zea mays hp301; Zm00027ab176850
- Zea mays i14h; Zm00028ab179790
- Zea mays p39; Zm00040ab186060
- Zea mays a632; Zm00092aa017968
- Zea mays ms71; Zm00035ab179680
- Zea mays pa259; Zm00027ab176850

Ggg (W) → Cgg (R)
starchy sweet

MAF <1%

rs831658143 (T/C)

Sweet corn (P39, IL14H)

Variant:	rs831658143
more about	rs831658143
Class	SNP
Location	4:43555709
Alleles	C/T
Ambiguity code	Y
Amino acid	R/W
Consequence	missense variant
Source	EV2024rs1_flanking_B73genes
Dom. change	Cgt/Tgg

P39

Tello-Ruiz et al,
unpublished

* W578R
previously
reported 3X

Data journey for GV datasets & recommended actions

Request assembly to be submitted to INSDC

Encourage or broker SNP submission to EVA; promote using standard IDs & formats

Adopt rsIDs, germplasm IDs & controlled vocabularies

Integrate with other standardized data types & link to other DBs & repos

Other AgBio DBs provided overview & progress towards FAIRifying GV data for white paper

Not FAIR

FAIR

A Tipping Point for Interoperable Agricultural Genomics

Anchoring variants to rsIDs unlocks integration with:

- Functional annotation tools
- GWAS, QTLs, and multi-omics data
- Breeding databases and germplasm repositories

IMPROVES

- Traceability
- Genotype-to-phenotype discovery
- Long-term reuse of genomic resources

What's next?

- Continue to raise community awareness of the benefits of rsIDs
- More AgBioData community databases adopting rsIDs
- More commercial SNP array providers using rsIDs
- rsID mapping to more pangenomes

Thanks!