

Research Parasite & Data Re-Use: Bacteria-Animal Lateral Gene Transfer

Julie C. Dunning Hotopp

Institute for Genome Science Department of Microbiology and Immunology

Research Parasites

- Researchers who generate new hypotheses from existing data
- 2016 New England Journal of Medicine editorial termed these researchers as "research parasites"
 - tongue-in-cheek name
- The Parasite awards, given annually, recognize outstanding contributions to the rigorous secondary analysis of data.

Companion Award: Research Symbiont Awards for data generators that encourage open data

Most Famous Case of Lateral Gene Transfer (LGT)

Real Advantageous Eukaryote LGT

- Thought to be uncommon
- Less frequent in animals

Color polymorphism by carotenoid biosynthesis acquired from fungi

Coffee berry parasitism by beetle acquiring *Bacillus* mannanase

Moran & Jarvik, Science, 2010; Acuna et al., PNAS, 2011.

Brown Marmorated Stinkbugs

- Halyomorpha halys
 - Hemiptera: Pentatomidae
- Invasive pest
- Native to Asia
- First observed in Allentown, PA in 1996
- Multiple bacterial mannanases

Ioannidis et al., BMC Genomics, 2014.

More Real Advantageous Eukaryote LGT

• Cellulases and other plant cell wall degrading enzymes in plant parasitic nematodes

e.g. Danchin et al., PNAS, 2010.

Serial Endosymbiosis Theory (SET)

- Explains the acquisition of mitochondria and chloroplasts by eukaryotes
- Over time, the accumulation of endosymbiont genes in the nuclear genome, combined with organelle protein uptake systems, enable the transition of an endosymbiont to an organelle.

The Many Hosts of Wolbachia Endosymbionts

Research Parasitism #1 (ca. 2005) --Serendipitous Genome Discovery

Drosophila

Salzberg et al. (2005) Genome Biology 6(3):R23.

wAna Anomalies

- Find *Drosophila* ORFs in the *Wolbachia* genome
- Multiple copies of the same gene
 - one intact
 - one disrupted by
 Drosophila
 retroelement

 Regions homologous to Drosophila ananassae
 Drosophila retrotransposable element components
 Conserved hypothetical proteins
 Rho termination factor
 Isocitrate dehydrogenase

wAna Anomalies

Possibilities:

- H1: Chimeric libraries were sequenced
- H2: Interdomain lateral gene transfer

In this case, we can just order the flies and perform follow-up experiments.

Extensive transfer of the genome

	Infected	Uninfected
Hawaii (insert)	43/46	43/46
Townsville (no insert)	Not tested	1/46

f = follicle cell nuclei n = nurse cell nuclei w = *Wolbachia*

Inheritance on a single autsome

Paternal Inheritance expected with autosome insertion

28/57 (49%) of offspring are positive 15/28 (54%) males 13/29 (45%) females

Three loci show segregation: 16S rRNA, wsp, gatB

Dunning Hotopp, Clark, et al., Science, 2007.

New Nearly Complete Genome using PacBio Sequel2 and MinION RAD

FISH with Nuwts

- LGT is in the abnormally large and heterochromatic 4th Chromosome
- Multiple sites hybridize
- >2% of the *D. ananassae* genome is derived from *Wolbachia* DNA
- 20% of chromosome 4 in
 D. ananassae is derived from
 Wolbachia DNA

Klasson et al., BMC Genomics, 2014.

Three Copies of a Nuwt—Different Outcomes

Very Fragmented, Because Massive Repeat

G3: GENES, GENOMES, GENETICS August 1, 2017 vol. 7 no. 8 2439-2460

Next Article >

G3 🛋

Genes | Genomes | Genetics

Previous Article

Our estimate is ~1000X higher.

Retrotransposons Are the Major Contributors to the Expansion of the *Drosophila ananassae* Muller F Element

Wilson Leung, Christopher D. Shaffer, Elizabe John M. Braverman, Thomas C. Giarla, Nathar Srebrenka Robic Shannon R McCartha Danie

Abstract

The discordance between genome size and the complexity of eukaryotes can partly be attributed to differences in repeat density. The Muller F element (~5.2 Mb) is the smallest chromosome in *Drosophila melanogaster*, but it is substantially larger (>18.7 Mb) in *D. ananassae*. To identify the major contributors to the expansion of the F element and to assess their impact, we improved the genome sequence and annotated the genes in a 1.4-Mb region of the *D. ananassae* F element, and a 1.7-Mb region from the D element for comparison. We find that transposons (particularly LTR and LINE retrotransposons) are major contributors to this expansion (78.6%), while *Wolbachia* sequences integrated into the *D. ananassae* F-element genes exhibit distinct characteristics.

Problems with Data Re-use

- Lack of adequate reporting of methods
 - Data cleansing
 - Contamination removal
 - Disappearance of collapsed repeats (e.g in degens)
 - Over-emphasis on the reliability of a consensus genome

Research Parasitism #2 (ca. 2006) – Scanning the trace repositories

- 26 arthropod and filarial nematode genomes
 - Have potential of being Wolbachia-infected
- 15 are organisms known to be infected
 - 20-70% of arthropods in the wild are infected
- 10 of these organisms have *Wolbachia* traces
- 8 show evidence of *Wolbachia*-host LGT

Wolbachia-host LGT Prevalence

- 31% of potentially infected organisms have LGT
 AND
- 80% of genomes with *Wolbachia* reads have LGT

Caveats:

Not a random sampling of organisms Deposited traces may be cleansed of bacterial traces Not all genomes are deposited

Nuwts: Nuclear Wolbachia Transfers

- 1/3 insect/nematode genomes sequenced in 2007 had nuwts
- Most endosymbionts do NOT do this
 - Stem-cell associated endosymbionts?
- In some insects, the entire Wolbachia genome integrated

Robinson and Dunning Hotopp. The Scientist, 2016.

wBm LGT into B. malayi

- 345 B. malayi regions
 - Spans ~428 kbp
 - Largest: 29.7 kbp
 - 0.4% of genome
- 133 wBm regions
 - Spans ~144 kbp
 - ~1.4% of the Wolbachia genome
- Thus, most are multicopy "repeats"
 - 59 are present >1
 - 5 have >10 copies
- Most are frameshifted
 - Only 21 full-length protein-coding regions, and many of those have altered start and stop codons
- Frequently in unscaffolded contigs

Foster*, Grote*, Mattick*, et al. Under review, 2019.

LGT can be beneficial and potentially neutral. Can they be deleterious?

Deleterious LGT—HPV

Crown gall disease in plants – Agrobacterium tumefaciens

- Directed transfer
 - 10-30 kbp of T-DNA from its Ti plasmid (200-800 kbp) to plants
- Type IV secretion system
- Targeted to the nucleus
- Incorporated by illegitimate recombination
- Transcription from T-DNA encoded eukaryotic promoters

Question

- If LGT is so prevalent from bacteria to invertebrates, is it also prevalent in other animals, like mammals?
- If so, is the lack of inheritance of LGT merely due to a lack of LGT in germ cells?
 - This may be the case in invertebrates as well since a germ line endosymbiont is what participates in this phenomenon widely
- Can transfers happen frequently in somatic cells where they would mutagenize the genome?

Microbial infections and cancer

- There are 10x more bacterial cells in our bodies than human cells.
- Worldwide, 15-20% of cancers are linked to bacterial, viral, or parasitic infections.

Research Parasitism #3 (ca. 2013) – Scanning TCGA data

- Nobody was going to fund me to sequence cancer samples in the hopes of finding deleterious LGT.
- The Cancer Genome Atlas (TCGA) was sequencing 1000+ cancer samples and providing the data to the public

Calibration with HPV in HeLa

- 6,333 reads supporting integration of HPV into the human genome
 - 0.12% of the total read pairs
 - Flank the constitutively expressed E6 and E7 viral oncogenes.
 - Vast majority comes from the known tandem integration site on chromosome 8

The Cancer Genome Atlas (TCGA)

- 6.6 trillion bases of Illumina paired-end sequencing data
- 691,560 read pairs supporting bacterial integration
 1× to 150× coverage.
- 63.5% of the TCGA analyzed were tumor samples
 - 99.9% of reads supporting bacterial integration came from tumor samples
- Majority of normal samples had no read pairs supporting integrations
 - Majority of tumor samples had >10 reads supporting integrations

Distribution in tumor v. normal

Number of Read Pairs Supporting Bacterial DNA Integration

Acute Myeloid Leukemia (LAML)

Stomach Adenocarcinomas (STAD)

Problems Along the way

- Solely computational research
- Experimental validation needed, but no access to samples
- Problems with the data accessibility statements
 - Statements said one thing
 - Interpreted differently or differentially

Summary

• Pros:

- Data reuse, a.k.a. research parasitism, is a great way to test new and controversial hypotheses
- Great for providing preliminary data for a grant

• Cons:

- Frequent problems with understanding methods applied and how they may alter the interpretation
 - Discrepancy between database and manuscript methods
- Access to samples for validation and follow-up experiments are frequently limited or impossible
- Sometimes people throw away the data you are interested in, to save space or "clean-up" the data
 - Data sometimes is stored in a manner that is great for existing ideas and hypotheses (e.g. bam files if only mapped reads for SNP-based analyses) but that eliminates the testing of new paradigms

Funding

National Institute of Diabetes and Digestive and Kidney Diseases

NIH DIRECTOR'S

BILL& MELINDA GATES foundation

If you are interested in sharing information on lateral gen transfer: we have an NSF-supported YouTube channel on LGT

https://goo.gl/i967FA

Or subscribe: "JDH Lab" on YouTube